Chronic nicotine induces hypoxia inducible factor-2α in perinatal rat adrenal chromaffin cells: role in transcriptional upregulation of KATP channel subunit Kir6.2.

نویسندگان

  • Shaima Salman
  • Stephen T Brown
  • Colin A Nurse
چکیده

Fetal nicotine exposure causes impaired adrenal catecholamine secretion and increased neonatal mortality during acute hypoxic challenges. Both effects are attributable to upregulation of ATP-sensitive K(+) channels (K(ATP) channels) and can be rescued by pretreatment with the blocker, glibenclamide. Although use of in vitro models of primary and immortalized, fetal-derived rat adrenomedullary chromaffin cells (i.e., MAH cells) demonstrated the involvement of α7 nicotinic ACh receptor (nAChR) stimulation and the transcription factor, HIF-2α, the latter's role was unclear. Using Western blots, we show that chronic nicotine causes a progressive, time-dependent induction of HIF-2α in MAH cells that parallels the upregulation of K(ATP) channel subunit, Kir6.2. Moreover, a common HIF target, VEGF mRNA, was also upregulated after chronic nicotine. All the above effects were prevented during co-incubation with α-bungarotoxin (100 nM), a specific α7 nAChR blocker, and were absent in HIF-2α-deficient MAH cells. Chromatin immunoprecipitation (ChIP) assays demonstrated binding of HIF-2α to a putative hypoxia response element in Kir6.2 gene promoter. Specificity of this signaling pathway was validated in adrenal glands from pups born to dams exposed to nicotine throughout gestation; the upregulation of both HIF-2α and Kir6.2 was confined to medullary, but not cortical, tissue. This study has uncovered a signaling pathway whereby a nonhypoxic stimulus (nicotine) promotes HIF-2α-mediated transcriptional upregulation of a novel target, Kir6.2 subunit. The data suggest that the HIF pathway may be involved in K(ATP) channel-mediated neuroprotection during brain ischemia, and in the effects of chronic nicotine on ubiquitous brain α7 nAChR.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Title : Chronic Nicotine Induces Hypoxia Inducible Factor - 2 α 1 in Perinatal Rat Adrenal Chromaffin Cells : Role in

46 Fetal nicotine exposure causes impaired adrenal catecholamine 47 secretion and increased neonatal mortality during acute 48 hypoxic challenges. Both effects are attributable to 49 upregulation of KATP channels and can be rescued by pre50 treatment with the blocker, glibenclamide. Though use of in 51 vitro models of primary and immortalized, fetal-derived rat 52 adrenomedullary chromaffin cel...

متن کامل

Chronic opioids regulate KATP channel subunit Kir6.2 and carbonic anhydrase I and II expression in rat adrenal chromaffin cells via HIF-2α and protein kinase A.

At birth, asphyxial stressors such as hypoxia and hypercapnia are important physiological stimuli for adrenal catecholamine release that is critical for the proper transition to extrauterine life. We recently showed that chronic opioids blunt chemosensitivity of neonatal rat adrenomedullary chromaffin cells (AMCs) to hypoxia and hypercapnia. This blunting was attributable to increased ATP-sensi...

متن کامل

Ontogeny of O2 and CO2//H+ chemosensitivity in adrenal chromaffin cells: role of innervation.

The adrenal medulla plays a key role in the physiological responses of developing and mature mammals by releasing catecholamines (CAT) during stress. In rodents and humans, the innervation of CAT-producing, adrenomedullary chromaffin cells (AMCs) is immature or absent during early postnatal life, when these cells possess 'direct' hypoxia- and CO2/H(+)-chemosensing mechanisms. During asphyxial s...

متن کامل

O2 sensing in chromaffin cells: new duties for T-type channels.

T-type Cav3 channels are voltage-gated Ca2+ channels that are able to sustain key physiological functions such as low-threshold spikes generation, neuronal and cardiac pacemaking, muscle contraction, hormone release, cell growth and differentiation. This mainly derives from the unique property of T-type channels that activate at rather negative voltages (∼ −60 mV). These channels are ubiquitous...

متن کامل

Intrathecal transplantation of cultured calf chromaffin cells attenuate sensory motor dysfunction in a rat model of neuropathic pain

The potential usefulness of chromaffin cells as a source of neuroactive agents for transplantation in the CNS is based on several promising features, including the diversity of biologically active neurotransmitters, neuropeptides and trophic factors produced by the cells. The purpose of this study was to test the possibility that motor as well as sensory dysfunction is reduced by cultured chrom...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Cell physiology

دوره 302 10  شماره 

صفحات  -

تاریخ انتشار 2012